skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Lixuanwu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding urban heat exposure dynamics is critical for public health, urban management, and climate change resilience. Near real-time analysis of urban heat enables quick decision-making and timely resource allocation, thereby enhancing the well-being of urban residents, especially during heatwaves or electricity shortages. To serve this purpose, we develop a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate near real-time heat exposure maps from human sentiments on social media at both city and national scales with km spatial resolution and census tract spatial unit. We conducted a case study to visualize and analyze human sentiments of heat exposure in Chicago and the United States in September 2021. Enabled with high-performance computing, dynamic visualization of heat exposure is achieved with fine spatiotemporal scales while heat exposure detected from social media data can be used to understand heat exposure from a human perspective and allow timely responses to extreme heat. 
    more » « less